Suppressive control of the crustacean pyloric network by a pair of identified interneurons. I. Modulation of the motor pattern.
نویسندگان
چکیده
A pair of identified neuromodulatory neurons, the pyloric suppressor (PS) neurons, can individually and strongly modify the activity of the pyloric network in the stomatogastric nervous system of the lobster Homarus gammarus. The PS neurons are identified by the location of their somata in the inferior ventricular nerve, their axonal projections, and their effects on pyloric network activity in vitro. Discharge of a PS neuron evokes large EPSPs in the pyloric dilator (PD) neurons and a long-lasting cessation of rhythmic activity in the neurons that control movements of the pyloric filter: PD, lateral pyloric (LP), and pyloric (PY). This cessation of rhythmic activity can outlast by several 10s of seconds a brief discharge of PS lasting only a few seconds. The different neurons of the pyloric filter do not exhibit the same sensitivity to the suppressive effects of PS, with the LP neuron being the most sensitive. Tonic discharge in PS induces graded alterations in the pyloric pattern, depending on its firing frequency. At low (less than 5 Hz) discharge frequencies, PS provokes changes in phase relationships and duration of bursting in pyloric neurons. A slight increase in PS frequency suppresses the rhythmic activity of some pyloric neurons, resulting in a switch from a triphasic to a biphasic pattern. At higher (greater than 10 Hz) PS firing frequencies, rhythmic activity in all the pyloric neurons, including the pacemakers (PD, anterior burster), is abolished, except in cells (ventricular dilator, inferior cardiac) controlling the pyloric valve. We conclude that a central pattern generator is not only subject to activating modulatory control, but may also be the target of suppressive inputs that are themselves able to provoke functional reconfigurations of the network.
منابع مشابه
Suppressive control of the crustacean pyloric network by a pair of identified interneurons. II. Modulation of neuronal properties.
In the lobster Homarus, the 2 identified PS neurons have a strong suppressive modulatory effect on the activity of the pyloric network in the STG (Cazalets et al., 1990). In the present paper, we consider the effects of PS on individual pyloric neurons isolated from their partners in the network by cell photoinactivation and synaptic blockade. Three types of PS action are described: (1) a trans...
متن کاملSuppression of Oscillatory Activity Implication of GABAergic Inputs Crustacean Neurons:
Generation of rhythmic pyloric motor output in the crustacean stomatogastric ganglion results from synaptic connections and cellular properties of a 14-cell network of pyloric neurons. These cellular properties are under the influences of modulatory inputs, which act, for the most part, in an activating mode, i.e., they enhance the bursting properties of the pyloric neurons and/or their ability...
متن کاملModulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide.
The modulation of the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis, by crustacean cardioactive peptide (CCAP) is described. CCAP activated pyloric rhythms in most silent preparations, and altered the phase relationships of pyloric motor neuron firing in all preparations. In CCAP, the pyloric rhythms were characterized by long lateral pyloric (LP) neuron bursts of a...
متن کاملNeuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization in vitro.
Neuromodulatory inputs play a critical role in governing the expression of rhythmic motor output by the pyloric network in the crustacean stomatogastric ganglion (STG). When these inputs are removed by cutting the primarily afferent stomatogastric nerve (stn) to the STG, pyloric neurons rapidly lose their ability to burst spontaneously, and the network falls silent. By using extracellular motor...
متن کاملControl of a central pattern generator by an identified modulatory interneurone in crustacea. II. Induction and modification of plateau properties in pyloric neurones.
In the isolated stomatogastric nervous system of the lobster Fasus lalandii, the strong modifications of the pyloric motor pattern induced by firing of the single anterior pyloric modulator neurone (APM) are due primarily to modulation by APM activity of the regenerative membrane properties which are responsible for the 'burstiness' of all the pyloric neurones and particularly of the non-pacema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 2 شماره
صفحات -
تاریخ انتشار 1990